
Tutorial TinkerCAD Electrical Series Circuit 

By: Matthew Jourden 

Brighton High School 

Brighton, MI 

 

1. Navigate to TinkerCAD.com > Click Sign In Icon (Top Left Side of Screen > Select Students, Join your Classroom > 
Classroom CODE: HEQ2VA3WQT4N > Nickname: Student First Name (all lower case) 

 

2. Select Circuits > Select Create New Circuit 

 

 
 

 

3. Change Name of Circuit to Electrical Circuit 1: Series Circuit 

 

Select Default File name in the Top Left Corner 

    
 

4. Adding Electrical Components. TinkerCAD is a Drag and Drop interface 

5. Rename File > TinkerCAD Electrical 3: Arduino 1 

 

 

 

 

 

 

 

 

 

1. Select Circuits 

2. Select Create new Circuit 



Arduino: is an open-source hardware and software that allows users to wire a circuit using resistors, buttons, sensors, 

etc. and write a program that can receive and transmit data to control the circuit. 

 

Arduino has its own IDE Software where the user programs then downloads to the Arduino Board.  TinkerCAD offers a 

simulation, that allows the user to create a simulated Arduino board and its circuit and then the user can write a 

program to receive and/or transmit data to control said circuit. 

 

Arduino uses a C++ based programming language.  Arduino Programming Syntax is very similar to C++, so things like 

comparison (IF/THEN Statement), Mathematical Computations, Loops (FOR, DO, DO/WHILE), Ending of Line 

Statements ( ; ), etc. are written the same.  What differs is how to INPUT/OUTPUT data varies.   

See Reference Document: Arduino Common Syntax on the class website for common coding commands.   

 

Objective: First Tutorial is designed to simply wire a single LED and then Program its use. 

 

1. Electrical Component Toolbox > Find Arduino Uno > Drag and Drop Arduino Uno onto screen 

 

 

2. Arduino Board Overview 

 
Digital I/O Pins 0-13: Operate in an On/OFF State.  Meaning what is being controlled in these ports is either On or 

OFF. Example would be a push button: it is either pressed or it is not, there is no in-between state. 

 

Analog In Pins 0-5: Operate within a range of values, which allows the user to bring in data that is constantly 

changing.  Example: Thermocouple (Thermometer) is constantly sensing temperature and has a range of values 

that it falls into.  

 

Scroll Down in 

the Basic 

Category 

Power Cord to 

Computer.  Power Cord 

will take the place of a 

battery.  When 

simulation runs then the 

power cord will plug into 

the Arduino board 

automatically. 



 

3. Wire the following Circuit (Change Electrical Component Ratings and Wire Color as shown) 

 

a. Start Digital Pin 7: The digital pins act as a switch to turn on/off the flow of electricity to the circuit.  On the 

Arduino Board is a 5V and 3.3V Port that can be used to apply direct electricity to a circuit without  

b. Drag Wire to + Row on Breadboard 

c. Place Resistor = 220 Ω starting from + row on breadboard to adjacent row 

Notice: The end of the Resistor is not touching the Red Wire from Arduino.  Once a wire is in either the + or – 

row the whole row is charged with electricity 

d. Place LED with the pins in different columns.  NOTE: Anode (Bent Wire) should be on the Resistor Side and 

the Cathode (Straight Wire) should be leading towards the – on the board. 

 

Notice: The end of the Resistor is not touching the end of the LED.  Once a wire is placed in the column a-e or 

f-j the whole column (vertically) is charged with electricity 

 

e. Drag a wire from Cathode side of the LED to the – Row on breadboard  

f. Drag a wire from – row on breadboard to GND (Ground) on the Arduino (NOTE: the Arduino Board has 3 

GND (Ground Ports). It does not matter which of these ports the user places the wire. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



4. Select the Code Button on the Top Right Hand Side of the Screen > Select Drop Down Menu (Defaults at Blocks) > 

Change to Text > Pop-Up Message will appear > Press Continue 

 

TinkerCAD allows the user to program in 1 of 2 ways 

a. Block: Which is designed with blocks of prebuilt code and link together like puzzle pieces.  Similar to 

Scratch or Snap. Block is an easier form of programming and is a good place to start, but there is less 

flexibility when doing complex computations, controlling of multiple motors/sensors, etc.  

b. Text: is C++ based programming language.  The user will type the code to operate the circuit.  Text offers 

the user a wider range and flexibility of options when programming 

 
 

 

5. Highlight all code and delete 

6. Type the following code 

 

 

 

 

 

 
 

 

 

 

Download: Saves the code to be 

downloaded onto an Arduino 

Board for live testing.   

Libraries:  Allows users advanced 

functions like LCD, motors, 

Game controllers, etc. without 

have to program the base code 

for those components 

Debugger: User can 

check to see if the 

code has any errors 

in it. 

Choose the type of 

Arduino that is being 

used.  NOTE: we are using 

the Arduino Uno in class 



 

7. Program: Blink 

Objective:  

1.  Turn the LED ON/OFF  

2. Using Variables in Arduino Code 

3. Control the Number of Times the LED is turned ON/OFF 

4. Output Text using the Serial Monitor 

NOTE: whenever the users // before any text; the text that follows on that line becomes a comment, which the software will 

not read it as a command and skip over it. To comment out large sections at a time use /* at the beginning and */ and the end, 

this allows the user to comment large portions of code out at a time.  

Objective 1: Turn LED ON/OFF 

a. Type the following Code (NOTE: do not worry about the color coding.  Original code is programmed in the 

Arduino IDE, which color codes commands.  TinkerCAD only codes some of the commands.) > Select 

Debug to see if there are any errors > Correct errors as needed 

 
 

b. Running the Code.  Press Start Simulation > Notice the following 

i. Power cord plugs into the Arduino providing electricity to the board 

ii. LED turns on for 1000ms or 1s then turns off.  

iii. Simulation continues to run until user presses Stop Simulation.  Theoretically the program is 

continue to run because the void loop() is unbreakable, but since there is nothing located in this 

function nothing appears to be happening. 

 

 



 

c. Adjust the code as shown below 

 
d. Running the Code.  Press Start Simulation > Notice the following 

i. Power cord plugs into the Arduino providing electricity to the board 

ii. LED turns ON for 1000ms or 1s   

iii. LED turns OFF for 2000ms or 2s 

iv. Then void loop() repeats itself  

Objective 2: Variables in Arduino Code 

In Arduino Code the same variable types are used as C++  

- int = integer 

- double or float = real number 

- char = character 

- string = 286 consecutive characters 

- among others 

One issue we may run into when programming and wiring circuits if we need to move wires for different pins, then in our code 

we would have to change the pin numbers more than likely missing one. So, what we will do is use a variable name to act as 

our pin.   

There is three four places where variable can be declared 

1. before void setup(): this allows the variable to be used throughout the program (void setup(), void loop(), any other 

functions that maybe used 

2. in the void setup(): this allows the variable only to be used within the void setup() function 

3. above void loop(): this allows the variable to be used by any functions after the declaration 

4. in the void loop(): this allows the variable only to be used within he void loop() 

Depending on what you want the variable to do will depend on where it is declared; I prefer to option 1 so I only need to look 

in one location.  Mind you it depends on the program the more complex the program is the more likely variable declartions 

will be placed throughout the program. 

 

 

 

 



 

1. Adjust the code as follows.  

Since the pin we are using is the number 7 and the number 7 is an integer we will declare a variable called redled (my 

led is the color red) as a integer and assign the value of 7 to it > then adjust our code to where ever the number 7 

appears to redled 

 

 

a. Run the simulation > Notice the program runs the same as previous 

 

Objective 3: Control the Number of Times the LED is turned ON/OFF 

 

Now the code will be adjusted to turn the LED ON/OFF a number of times then give the illusion that the program has ended 

 

1. Add the following code 

 
 



2. Run the Simulation 

a. Notice the code runs and the LED is always flashing.  The reason for this is the FOR loop is running 3 times 

turning the LED ON/OFF then resets itself after it falls out of the loop the 3rd time. So, we still have an infinite 

loop.   

b. Test to show the FOR loop ends, but the void loop () does not.   

 

Add a delay statement after the FOR Loop of 3000 ms (3s) > Notice know that the light flashes fast then there 

is a long delay to reset itself. 

 
Now we will trap the user within a loop that does not do anything to give them the illusion that the program 

has ended by using a while loop. 

 

c. Modify the code as follows 

 



d. Run the Simulation > Notice 

i. Light Flashes ON/OFF 3 times checking each time with the IF/THEN if counter equals 4 

ii. Once counter equals 4 the light turns off 

 

Objective 4: Adding Text Output 

Adding text to a program to output/input information Arduino uses the Serial Monitor.  The Serial Monitor is located on the 

Bottom Left of the Programming Screen 

 

This is where Arduino programming varies from C++ programming when dealing with Input/Output. 

1. Connecting to the Serial Monitor and outputting to the Serial Monitor 

a. In void setup() place the following line of code 

serial.Begin (9600);     This code sets the baud rate in which information is sent between the PC and 

the Arduino board. 9600 is the goldilocks number to transfer English data charaters. 

 
 

 

 

 

 

 

Serial Monitor 



 

b. In void loop() place the following code 

Two Options to print items to the Serial Monitor 

Option 1: Serial.print (“TYPE INFO TO OUTPUTTED); or Serial.print (Place Variable Name);  Both options will 

keep the cursor on the same line when outputting 

 
 

 

 

Option 2: Serial.println (“TYPE INFO TO OUTPUTTED); or Serial.println (Place Variable Name); Both options will 

drop the cursor down to the next line  

 

NOTE: There is not a way in Arduino to mix User Text (“HELLO WORLD “) with variables. Each has to be on its own Serial.print 

or Serial.println line 

NOTE: TinkerCAD Serial Monitor does not clear the previous run.  Refresh the Browser and it will clear the last test run 

Insert Output Line 

Here 

Text stays on same line 

Insert Output Line 

Here 

Text stays on drops to the next line 



c. Type the following code where the arrows are located 

 

 

d. Run the Simulation Output Should look as follows 

 

Submission 

1. Take a Screenshot of the following 

a. Complete Code 

b. Final Output 

c. Preview screen of program from User Hub (similar to Tutorials 1 and 2 Electrical Circuits series/parallel) 

  Place each screenshot in a Word or Google Document and send me a pdf of completed work. 

 

 

 

 

 

 

 

 

 


