
How "wide" is your brain?
You may be reading some of this and say to 
yourself, "Self, this doesn't make sense - I 
can hear a weak signal as well with the SSB 
filter as I can with the CW filter.  What's the 
deal here?"  
We are getting into a field referred to as 
Psychoacoustics, or "How the brain 
perceives sounds."  As it turns out, the 
"trained ear" can fairly easily resolve a 
bandwidth of less than 30 Hz - assuming 
the presence of random noise in the 
background.  This means that if you have a 
single CW signal amongst 2.4 Hz of white 
noise - or even other CW signals that are at 
roughly the same strength but at a different 
pitch, then your brain/ear is perfectly 
capable of picking it out, being able to 
"ignore" the 2.4 Hz of noise and the other 
"dissimilar" signals:  Under these 

QRSS and You
Using absurdly low-speed CW for "communications"

(As well as other ultra-narrowband modes)
What Is QRSS?
The term QRSS is derived from QRS - a cw ("Morse code") abbreviation that means "You are 
sending too fast" or "Slow down."  By extension, then, QRSS would imply very slow sending speed.
While it is technically possible to copy CW sent at such a slow speed - provided, of course, that the 
signal/noise ratio was good enough to hear it - doing so would be very tedious as "copying" code at 
very slow CW speeds is not the same as copying CW at "normal" speeds.  At "normal" speeds (that is, 
anything above 5 words per minute) where one hears the "sound" of the letters and words, QRSS 
operation becomes a matter of timing the lengths of the elements received and manually assembling 
them into letters and words.  While I have done this in the past using a pen, paper and a watch, I 
prefer to leave such tedious tasks to computers!
The big question:  Why?
Why send CW at such a slow speed?  It all comes down to communications theory.  The faster the 
signaling rate, the more bandwidth you need.  The more bandwidth you have, the more energy (i.e. 
transmitter power) you need to keep your signal above the noise.  In a nutshell this means that the 
faster you go, the more power you need, all other things being equal. 

Let's take a look at a 12 WPM CW signal for a 
moment.  The "dit" length at this speed is 
approximately 1/10th of a second, so we can say that 
we could sent 5 dits (and 5 "inter-dit" spaces) in one 
second.  As a general rule-of-thumb, to keep the dits 
from running into each other, we'd need to make sure 
that our "receive" system was capable of responding at 
about 3 times the frequency of the dit's 1/10th of a 
second period, or about 1/30th of a second - which is to 
say, about 30 Hertz of bandwidth. 
So, this means that if we want to receive a CW signal 
that is running at 12 WPM, we'd have to use a CW filter 
that was no narrower than 30 Hz:  Going narrower than 
this will cause the "dits" to run together and we'll have 
difficulty copying the signal. 
Let's compare this to a standard SSB filter of, say, 2.4 
kHz bandwidth.  This 2400 Hz wide filter is 80 times 
wider than the 30 Hz filter (for an "ideal" filter) and 



conditions, narrower filters won't always 
improve the "copy" for a skilled operator.
Put this same CW signal in amongst other 
similar signals - some of which are much 
stronger and very close to the same 
frequency- and even the trained ear is hard-
pressed to make out the "buried" signal.  
Under these conditions, the brain isn't able 
to reject those "other" signals and a our 
hypothetical 30 Hz filter may make a world 
of difference.  
A simple detection/indication circuit - like 
an audio level meter - does not have any 
means to be able to pick out that 30 Hz of 
signal among the 2.4 Hz of noise, so if you 
were to look at the meter alone, you would 
never be able to see the meter deflect in 
sync with the keying of the signal.  Take the 
output of a 30 Hz bandpass filter - one that 
passes only that range of frequencies 
occupied by the CW signal- and feed it into 
the same meter and then you will likely see 
the meter deflect with the CW signal.  
Why?  Instead of 80 parts noise and 1 part 
CW signal bandwidth, we are now feeding 
it only that part of the bandwidth containing 
the CW signal.

will let 80 times as much energy through it.  Since our 
desired CW signal only takes 30 Hz of the 2400 Hz, 
most of our receive energy is where our signal is NOT 
(assuming a signal that is near the noise level, of 
course) and we are at a 19db disadvantage (ignoring 
Psychoacoustics, for the moment.) 
From this example we learn two things: 

1. For best performance, we receive with a filter that 
is no wider than the signal we are trying to 
receive

2. If you have a wider filter than the signal you are 
trying to receive, you are receiving "extra" energy 
from the noise that is "diluting" the desired signal 
- making the effective "signal-to-noise" ratio 
worse.

What #2 means that if, for example, you are just at the 
threshold of copiability with that 30 Hz filter mentioned 
above, if you used a 60 Hz wide filter, the signal that 
you were trying to receive would have to be doubled in 
power to get back to that "threshold of copiability."  
(Again, we aren't taking into account things like 
operator skill or psychoacoustics.) 
Becoming Narrow-Minded:
For a given modulation type (in this case, on-off keyed 
CW) the lower the "data rate", the narrower your 
transmitted signal, the narrower the required receive bandwidth, and the lower the lower the 
transmitted power required to maintain that "threshold of copiability."  Communications theory 
(Shannon's Law) states that if you were willing to transmit your data infinitely slowly you could 
communicate with infinitely narrow detection bandwidth and infinitely low (not zero) power.  It 
should go without saying that there are practical limits to how slow you would go to convey useful 
information in a reasonable amount of time. 
QRSS generally means that the CW sending speed is below 2-3 WPM - usually much slower than 
that.  Let's take as a rather extreme example, the VA3LK beacon on 137.79 Hz.  This experimental 
beacon has operated at a "dit" rate of one dit every ninety seconds - that's about .0133 words-per-
minute, or about 0.8 words-per-hour.  This also implies that the detection bandwidth for such a signal 
(see the equations below) should be at least 0.033 Hz - that's 33 Millihertz (mHz - notice the small 
"m"!)  Going much much narrower than this and the "dits" will start to run together and sacrifice 
"intelligibility." 
Compare this to the 2.4 Hz bandwidth for a moment:  33 mHz (notice the small "m") is 72000 times 
narrower than an SSB bandwidth - a difference of over 48 db.  A better example would be to compare 
this with a 30 Hz CW filter - a "reasonable" value for a well-designed CW filter.  This would still be 
900 times narrower than that - over 29 db difference in the receive signal/noise ratio.  (Once again, we 
are ignoring psychoacoustics.) 



An example of a "Waterfall" 
display on the Digipan 

program.
Frequency is on the horizontal 

axis, time is on the vertical axis, 
and the "brightness" of the color 

indicates relative signal 
strength.

Displays where the horizontal 
and vertical axis are swapped 

(and move right to left) are 
sometimes called "curtain" 

displays.

Putting it into practice:
What this means is that going from a 12 WPM signal received in a 30 Hz filter to a 0.0133 WPM 
(that's 0.8 WPH - Words Per Hour) signal received in a 0.033 Hz filter (which would be about as 
narrow as you'd want to go to copy a signal as "fast" as that...) would theoretically be equivalent of 
getting almost a 1000-fold increase in transmitter power.  The obvious tradeoff is that the 
communications rate is very low.  This rate makes it tedious - almost impossible - to copy the signal 
by ear.  Additionally, keeping a 0.033 Hz wide filter centered on the signal would be a feat in itself.  
Fortunately, computers have afforded us a solution. 
"Fourier is our friend..."
Through the "magic" of computers, we can simultaneously see many 
little "slices" (often referred to as "bins") of spectrum simultaneously 
visually on what is called a Waterfall Display.  This means that even 
though the signal may drift from one 0.033 Hz "slice" to another, we 
will still be able to see the signal as it moves around. 
Various programs display these "slices" on a graphical display:  In 
the example, the X (horizontal) axis shows frequency, the Y 
(vertical) axis shows time (with the most recent being at the top) and 
the Z (brightness/color) indicates relative signal strength.  Each 
"pixel" on the X axis represents a certain range of frequencies - and 
the more energy in that range of frequencies, the "brighter" that pixel 
will become.  (The "brightness" could be represented by an increase 
in actual brightness, or a change in color - depending on the way the 
program is designed.) 
Receiving the signals
We must make sure, however, that our receive system doesn't drift 
too fast:  If the receive system drifts, say, 0.033 Hz every 90 seconds, 
then that signal has spent equal time in each "slice" of spectrum, "lighting it up" only half as much as 
it would if it were to have stayed put, effectively reducing our "sensitivity" by 3db.  If it were to drift, 
say, 0.33 Hz over that 90 second period, then we just slid through 10 "slices" - lighting each one up 
1/10th as much as it would have been had it remained stable - possibly making the signal 
undetectable.  As it turns out, the visual medium allows our brain to do a remarkably good job in 
"integrating" various bits of the signal so even if our signal has drifted a bit, it is often possible to pick 
out evidence of "coherence" amongst the chaos of the random noise.  That is, the background noise is 
random whereas our desired signal is not. 
In general (and there are exceptions, of course) VFO-type radios (i.e. non-synthesized) are not good 
candidates for use for QRSS reception.  Given the typical drift rate of 100 Hz/hour for these radios, 
this would imply that they move about 1.6 Hz/minute, limiting the effective minimum useable 
bandwidth to 0.05 Hz or more.  There is also the problem that when using such narrow bandwidths, it 
the displayed frequency range is very small (under 100 Hz, usually) and it may be difficult to keep a 
VFO radio within that range, let alone figure out exactly which frequency you are on in the first place. 



"Seeing" the dits and dahs
"Reading" the dits and dahs from a 
waterfall display takes a bit of getting 
used to, but it is really quite effective 
in digging the signals out of the 
"noise."  Even the slightest trace of 
signal on the display can be perceived 
by the eyes:  The brain is very good at 
picking bits of order out of visual 
chaos...  
One suggestion that I would make:  
When you have, for certain, 
determined the length of the dits and 
dahs, it helps to mark their "length" on 
a piece of paper.  When QSB or QRM 
occurs, holding that piece of paper up 
the the screen can help make the 
decision whether or not what is on the 
screen is "too long for a dit" or "too 
short for a dah."  This method depends 
on the "scroll" speed of the waterfall 
display being constant - something that 
may not be true - especially on 
computers slower than a 200 MHz 
pentium.

There is another factor that should be considered:  Propagational phase shifts. 

In effect, changing the phase of a signal on a particular 
frequency is the same thing as changing its frequency during 
the change.  Let's suppose that we have a 1 Hz tone.  If we 
were to retard the phase of it by 360 degrees every second, 
then we are "eating" one cycle every second, resulting in a 
999 Hz tone. 
Propagation is a tricky thing:  A very distant signal will 
likely arrive at the receive point via a skywave.  Over that 
distance the effective path length could change slightly.  At 
our example frequency of 137.79, the wavelength is 
approximately 2 kilometers:  The total distance the signal 
travels to get to the receive site 2000+ km away could easily 
change by 1 km in the course of a minute or so, resulting in a 
180 degree phase change.  Since a phase change amounts to 
a frequency change, that signal may have actually moved 
while you were trying to "copy" that dit.  It is for this reason 
that one may want to avoid running narrower filters than you 
absolutely have to.  Fortunately, LF propagation is quite 
stable and these sorts of effects are much less prevalent than 
on HF. 
Using the Software
I have had good luck using Spectran (see the link below) for 
QRSS.  Argo is a program very similar to Spectran except 
that also has screen-capture capabilities but no real-time audio filtering.  Both of these programs will 
display a "waterfall" at various speeds. 
For best results,  do not use a filter narrower than the following equations show: 
CW Speed (in WPM) * 2.5 = Minimum filter bandwidth in Hz
Or, putting it another way: 
3/(Dit length in seconds) = Minimum filter bandwidth in Hz
Keep in mind that these are the minimum filter bandwidths that aren't likely to cause the dits and 
spaces to be smeared together excessively.  If conditions permit, I usually run the filters slightly wider
than this to help "sharpen" the dits and dahs as they appear on the screen.  The tradeoff here is that the 
signal/noise ratio is worsened with the wider signal. 
Spectran vs Argo:
Up to this point, I have mentioned only Spectran, but there is also the Argo program written by the 
same authors.  These two programs operate very similarly - except that Argo is more oriented toward 
visual representation of the recieved signal (having better facilities of displaying various bandwidths, 



Using Windows' (tm) built-in 
"Screen Capture"

automated screen-capture, etc.) while Spectran has a stronger emphasis toward being a general-
purpose utility program for analyzing and filtering the audio spectrum (as it has built-in bandpass, 
notch, and noise reduction) - in addition to visually displaying it.  Argo also provides the facility of 
inputting corrections for errors in the effective rate of a sound card.
If QRSS (or a similar "visual" slow mode) is your forte, Argo may be the better choice - but try them 
both and see which one is your favorite:  They are both free!
Spectrum Lab:
Another useful program for QRSS work is Spectrum Lab by DL4YHF (see the link below).  This 
program is actually a suite of tools that includes, among many other things, a spectral display that can 
be configured to convey spectral information visually - including a number of "canned" presets for 
QRRSS modes.
While very powerful, Spectrum Lab is also a bit complicated and has a fairly steep "learning curve" 
but there are a number of resources on the web that give some details on how this may be done.
Beware incorrect sample rates!
As with Argo, Spectrum Lab also provides a means for inputting corrections for the effective sample 
rates of sound cards.  Why is this important?  As it turns out when you run your sound card at a 
"11.025kHz" sample rate, chances are that it is not at that rate!  Why?  Newer versions of the 
Windows (tm) operating system actually run the sound card hardware at just a single sample rate - 
usually 48kHz - no matter what the program calls for!  Why do this?  Since it is possible for more 
than one program to access the sound card's input and output streams the operating system can only 
run it at a single rate for all programs.  If the program calls for a sample rate of something other than 
the "native" sample rate a conversion is done in software - but this conversion isn't usually very 
precise!
Another source of error can be in the sound card hardware itself:  Some lower-cost chipsets derive 
their sound card clock from sources that don't yield a precise sample rate of, say, 48 kHz.  Not 
unexpectedly, this, too, can result in an error.
So, if the computer "thinks" that the sample rate is "exactly" right - but it isn't - it will display 
frequencies incorrectly:  If the sample rate is higher than nominal, it will display frequencies that are 
too low and vice-versa.
How far off can a sample rate be, you may ask?  While differences of 1-2% aren't uncommon, I have 
seen a netbook with a sampe rate that was nearly 9% high when running at a sample rate of 11025 
kHz!
A program like Spectrum Lab allows one to take a very precise audio frequency - such as the 500Hz 
and 600Hz tones broadcast by WWV/H (and received in AM - NOT SSB!) and use those to calculate 
and input correction factors for the varied sample rates.
An actual "listening" session



You can use the operating 
system to capture what is on the 
screen for you without using a 
program that has screen-capture 
capabilities.  To do this simply 
make sure the program you 
want to capture is in the active 
window and hit and hold ALT
and then hit Print Screen.  This 
will copy the active window to 
the clipboard.  
At this point, you may go into a 
drawing program (like Paint) 
and use the edit - paste
function.  You may then 
edit/crop the image and save it 
to a file.
The programs ARGO and 
Spectrum lab also have built-in 
screen-capture capability that 
can automatically save a file at 
defined intervals to allow you 
to visually review the results at 
a later date.

On 24 January, 2001 at midnight, I decided to try to listen for the 
beacon operated by Larry Keyser, VA3LK - now SK.  After 
spending a few minutes "listening" (looking at the waterfall display, 
actually) I decided that it was getting too late to stay up.  I set the 
computer to "record" at a 6000 samples/sec rate with 16 bits, mono, 
and went to bed.  The next morning, I had a file that was about 250 
megabytes that would take about 7 hours to play. 
Or would it? 
"Listening faster"
Since I have two computers in my shack (the one is the "ham" 
computer, and the other is the faster computer used for audio/video 
editing, etc.) I strung an audio cable between the two and "played" 
the file back at 44100 samples/sec instead of the original 6000 
samples/sec.  This has the effect of "time compressing" 7 hours of 
"listening" into less than an hour. 
What is also required is that one calculates what the "original" 
frequency versus the "faster" frequency is going to be.  Since the 
"Ham" computer that I used at the time had a really cheap ($8.00) 
sound card, I knew already that it was slightly off-frequency 
(especially with the "non-standard" 6000 ksps rate that the recording 
program wanted to use) so I recorded a precise tone from WWV 
(the frequency of which I knew) at the 6000 Hz sample rate, and 
then played it back at 44100 samples/sec and measured the tone frequency using Spectran on the 
other computer.  I divided the new frequency by the original and now had a ratio that I could use to 
calculate the new "receive" frequency, the bandwidth, and "time compression" factor. 
With my sound card combination, I ended up with a 810 Hz tone (from VA3LK) being translated to 
6006 Hz - a factor of 7.41.  To look at 6006 Hz I had to change Spectran's sample rate to 22050 
samples/sec.  I also had to multiply the "bandwidth" on spectran by the same amount - so I used a 
bandwidth of 1.3 Hz or so.  Also, I calculated that VA3LK's 90 second long "dits" were now going to 
be about 12.1 seconds long, and set the "scroll" rate on the waterfall appropriately.  The results are 
below. 
Going faster still...
If this isn't fast enough for you, then you can force the playback program to play the mono (single 
audio channel) file as a stereo file.  This will effectively double the playback sample rate because two
samples are being played back simultaneously.
There is a "gotcha" with this method, however:  Since we are effectively "throwing away" every-other 
sample, we are also halving the time resolution of the original.  What this means is that we cannot 
play back or record a signal higher in frequency than one fourth of the original sampling rate without 
alisasing effects - which in this case amount to added noise and distortion.  This means that for, say, a 
6000 Hz sample rate, the original recorded audio cannot contain (un-aliased) frequencies higher than 
1500 Hz. 



Receive system information:
Receiver:  Modified Drake TR-7 with 
outboard homebrew DDS VFO (based 
on an AD9835).  Nowadays I also use 
an RFSpace SDR-14 receiver.

I was able to easily avoid this potential problem by recording the original audio through a 300 Hz CW 
filter centered at 800 Hz - passing only the range of frequencies from 650 to 950 Hz.  Even if I had 
used the SSB filter (which would have passed audio up to 2.4 Hz) I could have run the audio file 
through a low-pass filter program to remove the "offending" higher frequencies prior to "playing" 
them back. 

The above image is two "screens" from Spectran "stitched" 
together showing the received callsign from the late VA3LK.

The original 6 ksps file was played back at an effective sample 
rate of 96ksps as described above.  The "tics" at the bottom 

represent approxmately 162 seconds.
(Click on the picture for a larger  version, or click here for a 

175k .GIF version)

Update:
I replayed the original audio file and "tweaked" the settings on Spectran and was able to improve the 
"copy" a bit, the result of which is displayed above.  This time, I played the original sample back at 96 
ksps (by forcing the playback software to 48 Hz in stereo mode - so it processed two samples at once) 
and used an effective bandwidth of approximately 0.030 Hz - taking into account the multiplication 
factor.  I sent the results to Larry, VA3LK and he replied with the following: 

Clint:Answer to your question, YES.  You have heard the message from VA3LK on 137.7894 kHz.  Congratulations my friend!Thank You very much for your effort. I really appreciate the time it took, now we can continue the march westward,Hello CQ CQ KH6, ZL, VK LowFer people, ANYONE HOME?
If you have any comments about this page, let me know what you think by sending an email! 
Modes other than CW:
Using on-off keyed CW is attractive because of its 
simplicity.  One can simply see the dots and dashes and 
"decode" the received message.  Additionally, it does not 
need any synchronization (i.e. there is no "start bit" to try to 
find.)  Its utter simplicity also belies its disadvantages, 
however: 



Antenna:  LF Engineering LF-400B 
atop the metal roof of my house - near 
the MedFER antenna shown here. (No, 
the MedFER transmitter wasn't on 
when I was listening...)
Location:  West Jordan, UT, grid 
DN40ao.  (About 15 miles southwest 
of downtown Salt Lake City, Utah.)  
The analog receive bandwidth was 300 
Hz.  RF noise blanking was done using 
the Line-Synchronous Noise Blanker
and the noise blanker built into the 
TR-7 (an NB-7 rev. 2)  
The display above was done at an 
effective bandwidth of approximately 
0.17 Hz (taking into account "time 
compression") using Spectran.

• The on-off keying has a penalty in terms of 
communications power:  It may not be possible to tell 
(except by occasional educated guesses) whether the 
signal is unkeyed or simply faded out.

• The variable element length (dits, dahs, interelement 
spaces, intercharacter spaces, etc.) are easy targets for 
QSB and QRM.

• The coding is somewhat inefficient:  It takes twice as 
long to send a dah than a dit.  (We are counting 
interelement spaces, remember...)

One possibility that reduces these difficulties is FSCW.  In 
this mode, "key up" is one frequency, and the "key down" is 
another.  If you are able to receive both of these frequencies, 
then you can have positive verification between these two 
states and may be able to "fill in" some gaps that would 
otherwise be left by the "Did it unkey, or QSB?"
uncertainty.  This would also allow the possibility of copying 
a signal if one of the two frequencies were being blocked by 
a carrier or QRM. 
There is one mode that reduces some of these difficulties:  DFCW or Dual Frequency CW.  Simply 
put, one frequency is a dit, another is a dah, and unkeying represents a space.  This provides two 
advantages:  By representing a dit and a dah on different frequencies rather than different lengths of 
elements, the "dah" need only as long as the dit.  Furthermore, since we don't need to space dits and 
dahs apart from each other, we can (if we choose) eliminate the space between a dit and dah or a dah 
and a dit - but not between dits and dits and dahs and dahs (or else we couldn't tell when one dit ended 
and another began.)  "Encoding" the signal in this way as the obvious advantage of more than 
doubling the speed at which messages may be sent. 
The obvious disadvantage of this method is that both frequencies must be clear of QRM.  It also takes 
some "getting used to" when decoding the message. 
Purely digital modes:
There has been some discussion about using a purely digital mode.  The most frequently mentioned of 
these is BPSK.  BPSK stands for Bi-Phase Shift Keying.  What this means is that a "0" might be sent 
with one phase of the carrier, and a "1" would be sent with carrier 180 degrees different.  This method 
brings to bear several complications right off the bat that need to be taken into account: 

• To know the phase of the carrier at any given time, one would need to know what the phase had 
been in the past and what the two possibilities might be in the future.  In a nutshell, one needs 
to have a local "copy" of what the carrier looks like as a basis of comparison.

• Character/bit framing needs to be accomplished.  This is less of a challenge because one could 
simply decree "the start bit is always coincident with the beginning of the first second of the 
minute" and as long as everyone's clocks are accurate (not so difficult to do these days) then 
things are fine.



Another way to "Listen" Faster...
Bill DeCarle, VE2IQ, has written a 
program called "CRUNCH" that not 
only speeds up playback of a .WAV 
file, but will convert the "new" high 
frequency back down to a more user-
friendly low frequency.  
To get this program, it's probably best 
to do an internet search to find its 
current home on the web.

• There is a possible problem with phase ambiguity.  Unless one is already knows exactly what is 
being transmitted, the signal looks the same whether it is phase reversed or not.  How can we 
tell if what is being sent right now is a 0 or a 1?

The most daunting problem is the first one.  To be sure, we could conceivably lock the transmitter and 
receiver to some global standard (such as GPS) but assuming that you have done that, propagational 
changes may "dilute" the bit during the time that it is being received because of phase shifts.  While 
this isn't as much of problem on LF frequencies, it does effectively limit the minimum bandwidth 
attainable. 

A common solution is to recover the carrier and the data 
separately.  This is frequently done at higher bit rates 
because one can simply look for a carrier with a narrow filter 
and then, once it is acquired, use that carrier to demodulate 
the data itself.  In the case of very narrowband 
communications the bandwidth of your carrier recovery 
system may be about the same as your "data" filter.  In other 
words, it may take every bit as long to acquire the carrier as 
it did to demodulate the data it contained. 
Fortunately, we can look into the future.  Sort of.  If we can 
live with a delay in our communications system (which could be hours in some cases) we can "cheat" 
a bit.  If we "record" the signal, we can recover the carrier and figure out what its doing and then "go 
back" and using the information that we gained from the first "carrier recovery" pass, go back and 
figure out what the data was.  This scheme is commonly used in high-speed TDMA networks where 
we can't afford to waste "airtime" just to lock onto our signal.  The obvious disadvantage is that we 
lose ability for "real time" (assuming that it was practical if you were sending just one bit per minute, 
for example) communications. 
The phase ambiguity problem could be resolved in several ways:  One could simply receive the signal 
and then try "assembling" it both ways - only one of which will make sense.  We could also use a 
differential coding scheme where we might send a "0" with a phase shift and a "1" with no phase shift 
- but this scheme has its own problems such as knowing what the previous bit was. 
To be sure, BPSK has turned out to be quite robust:  Bill DeCarle's Coherent program takes 
advantages of several of the predictable traits of a BPSK signal (such as the location of the start and 
stop bits by previous agreement) and, knowing the message length beforehand, one can effectively 
"average" numerous repetitions together and reconstruct the original message. 
Another mode (somewhat similar to Coherent) is called WOLF (Weak-signal Operation on Low 
Frequency.)  It is essentially a more specialized implementation of Coherent.  This mode uses a 
fixed-length 15 character message, repeated at a precise rate.  For a brief description on how to use 
this program, see Lyle Koehler's Wolf For Dummies page.
Because links change over time, it is probably best to do your own internet search for 
the programs mentioned above.
Return the KA7OEI main page, or look at these other pages:



DSP Software for digging out the weak/buried signals:
Spectran Beta 4 and ARGO - Spectran is the successor to the well-known Hamview program.  This windows version can use any standard (full-duplex) sound card. Like "Spectrogram" this program produces a graphical "waterfall" display and has a real-time audio bandpass filter.  This program is more specifically suited for amateur/radio use as it's display algorithm can more distinctly show "buried" signals than Spectrogram.  The ARGO program is specifically tailored for QRSS - extremely slow speed CW.  It's frequency range is limited to audio, however. (By I2PHD and IK2CZL. Freeware - non-commercial use.)  You can download both of these from the Weak Signals web site.
Spectrum Lab software by DL4YHF - This is a general-purpose program that, among other things, can be used to copy and display QRSS signals.  Note that this program can be rather complicated and intimidating to use so read the documentation - such as it is - very carefully!
Any comments or questions?  Send an email!
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