
Arduino Calibration Caveats
By Robert C. Mazur, VA3ROM, October 2014.

1. THE PROBLEM WITH ANALOG AND DIGITAL CONVERSIONS AND Vcc
Note: Many Arduinos and clones use 10-bit sampling and this is okay, but 12 or 16-bit
sampling is preferred. In the specific case of the Arduino Uno, converting an analog
value to a digital value is simply analog value x (Vcc / 1024) where (Vcc / 1024) =
0.0048828125 volts resolution. Vcc is the positive power rail voltage and often
assumed to be exactly 5 volts (DC) and “1024” is the number of discrete levels used
for 10-bit (210) sampling (values from 0 to 1023) or 4.8828125 mV (millivolt)
resolution. To convert back, we use digital value x 204.8 where 204.8 = (1024 / Vcc).
Sometimes the values 1023 and 204.6 are quoted and this slight difference
introduces a 0.1% error which may or may not be an issue (usually not with 10-bit
sampling).

However, there’s a bigger problem because Vcc is never exactly 5.0 volts (the
onboard voltage regulator tolerance is usually +/- 5 to 10%) and worse yet, no two
boards’ Vcc are exactly the same! Here’re some measurements of my Uno’s “5.0 V”
Vcc using different power sources.

Power Source Measured “5V” Vcc Error
Laptop USB (5m cable) 4.80 VDC 4.0%
Laptop USB (1m cable) 4.94 VDC 1.2%
12V AA-battery pack 4.96 VDC 1.0%
9V AC/DC “wall-wart” 4.96 VDC 1.0%

So, it’s always a good idea to measure your board’s Vcc (use a voltmeter or see the
readVcc sketch) and compensate accordingly.



Figure 1: Example External AREF Voltage Divider
R1 and R2 can be individual resistors or multi-turn
potentiometers (for precise voltage adjustment(s))

One way to improve things
is to use the Arduino’s very
accurate internal 1.1 volt
reference to expand the
scale for sensors which
don’t produce voltages
greater than 1.1 volts; the
conversion is (1.1 / 1024);
for sensors producing less
than 3.3 volts but more
than 1.1 volts, you can
connect the AREF input to
the 3.3V output with a
simple voltage divider
(fixed resistors or multi-
turn potentiometers) in
combination with the AREF
input’s 32K internal resistor
and we use (AREF / 1024).
IMPORTANT: You must
instruct the Arduino that
you are using a different analog reference voltage before you attempt to read any
analog sensor because you can create a short circuit between AREF and AVCC and
destroy your board! To really improve accuracy, the only way to go is with external 2
or 4-channel 12-bit (4096 samples) and 16-bit (65536 samples) A/D boards with their
software adjustable channel signal amplifiers (they also free up the Arduino’s limited
analog inputs).

2. TEMPUS FUGIT
Another issue is with uncorrected Arduino timing and processing lag which is caused
by assuming that the Arduino’s 16 MHz clock crystal is exactly 16 MHz with a 0 ppm
(parts-per-million) error (typical ppm error is actually +/- 25 ppm) and no two boards
have the same ppm errors. A 1-minute delay may be a bit more or a bit less, and as
the sketch runs longer and longer, this starts adding up and affects any time critical
events. For better timing accuracy, with the ability to do other things during a delay
(albeit more complex to use) see Dr. Simon Monk’s timer library and examples. Or,
you could use hardware fixes with either an external GPS time signal (very, very
accurate) or a RTC (real-time clock) module (+/- 1 second per day).



3. “FLOAT” MY GROUND―NOT!
Analog sensors easily pickup up electronic noise to go with the signals they are
monitoring/measuring because every solid state device generates some internal
noise (to go with the Arduino’s onboard electronics) while other noise is picked up by
unconnected or “floating” analog inputs from the ether (the Universe is a very noisy
place!). Fortunately, there’s an easy way to fix most external noise by “pulling”
unused/unconnected analog inputs to ground via their internal pull-up resistors
(100K ohms) and some simple sketch code:

pinMode(An, OUTPUT);
digitalWrite(An, LOW);

Where ‘An’ is the analog input number (A0, A1, A2, etc.). Analog inputs are dual
purpose and can also be used as digital inputs/outputs so we can “pull” this trick off
by knowing this fact. Note: The internal pull-up resistors are too “weak” for current
limiting or logic level purposes and you must use external resistors ranging from 220
ohms to 10K ohms for these purposes.

There is still some residual “dark signal” noise but you can remove it once you
determine its value (beyond the scope of this article) but for most hobby
applications, you can simply ignore it.

MY FINAL
Well, that’s it!—73



REFERENCES AND RESOURCES

All Things Digital
http://tinyurl.com/og2acxq

Introduction to Arduino (PDF)
http://www.introtoarduino.com

Timer Library (Dr. Simon Monk)
http://www.doctormonk.com/2012/01/arduino-timer-library.html

Using Arduino’s Reference Voltages
http://arduino.cc/en/Reference/AnalogReference.


