

First published in the July-August 2023 issue of the Canadian Amateur

Snap Circuits Part 2: “Mr. Morse”

Introduction
This isn’t the full history and story of the “Electro-Magnetic Telegraph” as Samuel
Morse and Alfred Vail called it or about the complex love/hate personal/business
relationships between their two families. But it’s rather bittersweet because Vail died
broke and largely forgotten while Morse became rich and famous. After ten years of
avoiding it, I’m finally writing about a mode that we Amateurs either love or hate with
a passion. The inspiration for this article came about from Elenco Electronics’ amazing
Snap Circuits ARCADE microcontroller kit, which resulted in a gadget (to borrow the
Arduino term) that I call “Mr. Morse”’.

Genesis
The original Morse numbers code and electro-magnetic telegraph system used
movable type (custom cast lead “slugs”) and required a words/phrases to/from
numbers encode/decode dictionary paired with a printing (pen, pencil or steel stylus)
ticker-tape register (receiver) for visual decoding of short messages at each end of a
single wire (Figures 1A and 1B, next page). Morse was a professional artist (painter)—
not an engineer—so his numbers code and mechanical methodology wasn’t
commercially viable, but it was proof of concept that information could be transmitted
by electrical pulses sent over a single wire plus a record of messages could be made
and saved. The original paper tape, embossed using a steel stylus, of the first public
Morse code message (24 May 1844) was hand annotated by Samuel Morse for
posterity and is available for viewing here http://tiny.cc/9qx5wz.

Figure 1A: Morse Telegraph
System (1837)—Pre-Vail
A working replica of Morse’s
original printing register
receiver (background) and port
rule transmitter (foreground).
The telegrapher used a
dictionary to encode
words/phrases into numbers
then loaded custom cast
moveable type lead slugs
sequentially into the port rule.
A hand crank moved the slugs
under a rocker arm dipping a
wire staple in/out mercury
filled capsules to open/close a
battery external circuit (not
shown). Credit: “Were
Discovery Sparks Imagination”,
John D. Jenkins, 2009, page 37.

Figure 1B: Morse Printing
Telegraph Example (1837)
The telegrapher at the
other end of the wire
used the same dictionary
to decode the received
numbers back to
words/phrases then
wrote the message in
longhand on a telegram
form for delivery to the
customer. Credit: “Early
History of the Electro-
Magnetic Telegraph from
the Letters and Journals of
Alfred Vail. Credit:
University of Michigan
library collection.

In 1837, after a chance meeting with Samuel Morse, who was an art instructor at the
University of the City of New York (now NYU), young graduate student and engineering
genius Alfred Vail became a business partner (so he thought) or was only a work-for-
hire assistant to Morse (so he thought). Either way, Vail contractual agreed to improve
the mechanical side of Morse’s telegraph system with the financial assistance of
Alfred’s wealthy businessman father Stephen Vail. I’ve read the original contact
wherein the Vail’s agree to finance the entire cost of redesigning Morse’s electro-
magnetic telegraph system with the intent that it would be sold outright to the U.S.
government in exchange for a percentage of the sale, and that Samuel Morse would
retain all patent rights (and all legal liabilities) of said system as being the sole inventor.
And Vail also had a “do-or-die” deadline of only a few months, but he did it only a week
late with his redesign of the register making it more compact and more reliable by
using a windup clock-driven control mechanism instead of the drop weight (Figure 1C)
along with his invention of the “finger” key then the “straight” (level correspondence)
hand key. The hand key simplified transmission, increased speed and accuracy of
messaging, eliminating the port rule and moveable type. Basically, Vail improved on
Morse’s original “hardware” while Morse improved his “software”.

Figure 1C: Alfred Vail early register and hand key (insert)
Vail continued refining the register and bequeath his personal handmade favourite to Morse
in his Will. If they had any acrimony in this life, Vail didn’t want it to carry over to the next.
Credit: Drawing from the Smithsonian Institution.

A new dot/dash code was created to include letters of the alphabet (eliminating the
dictionary). It was based on the binary system, which was created by the famous 17th
century mathematician Gottfried Wilhelm Leibniz (“Explication de l’Arithmétique
Binaire”). Morse visited local print shops and counted the number of lead slugs in each
letter’s storage bin then he used this information to assign the most frequently used
letters the shortest time units. In English, the letter E is the most used so it was defined
as the short mark (dot) of one time unit while T (the second most used) was defined as
the long mark (dash) of two time units (not three as today). This became known as the
American Morse (also railway/landline) code to distinguish it from the optical and
electric telegraph systems used in Great Britain and continental Europe at the time.
Alfred Vail explained this in his 1845 book “The American Electro Magnetic Telegraph”.

“By examining the telegraphic alphabet, the characters will be found to be made up of
dots: short and long lines—and short and long spaces. A single touch of the key,
answers to a single dot; which represents the letter, E. One touch of the key prolonged,
that is, the contact at the key continued for about the time required to make two dots,
produces a short line, and represents T. A single touch for about the time required to
make four dots, is a long line, and represents L. A single touch for about the time
required to make six dots, is a still longer line and represents the 0 of the numerals. If
the use of the key be suspended for about the time required to make three dots, it is a
short space, used between letters. If suspended for the time required to make six dots,
it is a long space, used between words, and a longer space is that used between
sentences. These are the elements which enter into the construction of the telegraphic
characters, as used in transmitting intelligence. The alphabet is represented by the
following combination of these elements.”

Note 1: The “long space” was written as a period in messages delivered to customers.
Other punctuation wasn’t defined until the American Telegraph Conference of 1854.

Note 2: Inept/inexperienced “fists” often sent sloppy “hog-Morse” or “ham-fisted” code
caused by letters with the same number of dots only differentiated by their inter-
element spacing: I and O (two dots); C, R and S (three dots); H, Y and Z (four dots).
Figure 2 refers. To be called a “hog” or a “ham” on the circuit wasn’t a telegrapher’s
term of endearment!

Morphosis
In 1847, Friedrich Gerke witnessed demonstrations of Morse’s code and telegraph
system in Hamburg, Germany. He immediately realized that it was far superior to the
optical telegraph system used within the German Confederation (central Europe). But
he also realized that while it worked well for English text, most European languages
had accented letters and digraphs with alphabets having more than 26 letters. But only
a year later, the very determined Gerke had not only translated Vail’s “The American
Electro Magnetic Telegraph” into German, he had also redesigned large portions of the
American Morse code!

Gerke gave the dot problematic
letters their own dot/dash
combinations. The two
different length dashes (short
and long) were discarded
leaving just the dot (still one
time unit) and the modern
longer dash (now three time
units). Added were the German
umlaut letters Ä, Ö and Ü plus
the digraph CH. This became
known as the Hamburg or
Continental (German) code,
adopted in 1851 by the
German-Austrian Telegraph
Association. Note: Gerke’s
revisions of numbers plus
letters O, P, X, Y and Z had
some really strange dot/dash
combinations plus the letters I
and J used the same code.
Figure 2 refers.

Figure 2: The Three “Morse” Codes
This comparison chart shows the almost Darwinian-like evolution.
Credit: “Spinningspark”; Wikipedia: CC BY-SA 3.0.

In May 1865, the Continental (German) code’s problematic numbers and letters were
again redefined. The umlaut letters and digraph were removed because they were
considered too “Prussian” for French Emperor Napoleon III, who was also the host of
the first international telegraphy conference held in Paris, France. The result was the
International Morse code, which was adopted by the newly created International
Telegraph (now Telecommunication) Union or ITU. The original mandate of the ITU was
to establish international rules and regulations for telegraph networks among the first
20 signatory treaty nations (now nearly 200). It created a framework standardizing
telegraphy equipment, established uniform operating procedures, set tariff rates and
accounting guidelines. But the three “Morse” codes weren’t mutually comprehensible;
American landline/railway telegraphers stubbornly stuck with their version for
domestic use (allowed by the ITU treaty) while the Germans naturally preferred theirs.
However, the International Morse code quickly became the de facto “lingua Franca” by
the rest of the world because its use was mandatory when transmitting messages via
oceanic submarine communication cables that rapidly encircled and interconnected
the world by the end of the 19th century, creating the very first “internet”.

Today
Morse code (meaning the international version from now on) has been adapted to
control devices and assist persons with various disabilities by using puff-and-suck,
head-tilt or eye-blink, foot or finger-tap, etc. Your smartphone can switch between the
standard QWERTY to a Morse code virtual keyboard. Languages based on the Cyrillic,
Arabic and Japanese alphabets use character matching of their alphabets to the same
or nearly the same Latin alphabet letters with modifications and/or additions for letters
that don’t exist in the Latin alphabet. Of course, Morse is very much alive and thriving
in the Amateur Radio world and it’s still the only digital mode that we humans can
encode/decode in our heads.

As an aside, most Amateurs refer to Morse code as “CW”, but CW means “continuous
wave”—a transmission method not a mode. In 1902, radio pioneer Reginald Fessenden
invented the mechanical (alternator driven) continuous wave transmitter and “CW”
was used to differentiate between it and spark gap (damped wave) Morse code. This is
no longer required because spark gap use is prohibited on the Amateur bands and
there are umpteen “CW” modes in use today.

Meet “Mr. Morse”
Elenco’s Snap Circuits ARCADE kit was introduced in the part 1 article (see TCA May-
June 2023) wherein it was described how to build and code a simple PICAXE
microcontroller Morse code practise oscillator (CPO). Over the ensuing months, it has
“evolved” far beyond my expectations (Figure 3, below and Figures 4A and 4B, next
page). Snap Circuit kit builds may be for “children” and are large, colourful and cute or
artsy looking, but Elenco also packs in a lot of learning and fun for “Ages 8 to 108”, as
their box cover art proudly states. And once I reversed engineered the undocumented
ARCADE source code, it was fairly easy to develop my own variant or “fork”.

Figure 3: “Mr.
Morse” Pictorial
Elenco’s Circuit
Designer (MS
Word, only)
makes it easy to
swap virtual
Snap Circuits
electric or
electronic
components
in/out and/or
position them as
required before
you build any
real-world snap
circuit.

Revolution Education’s (Rev. Ed.) free PICAXE Editor 6.0 was used to develop the “Mr.
Morse” control code. As an old-school programmer, I still prefer to use free form line
coding instead of PICAXE Blockly and object orientated programming (OOP). The part 1
article refers. My source code is fully commented so I won’t go into the nitty-gritty of
how it works because you can download the supplement zip file from my Radio Magic
web page and study the code. I’ve also included several interesting articles including
Samuel Morse’s bound diaries (Volume 2) that cover the telegraph’s genesis, its
development, his relationship with the Vail family, etc.

Figure 4A: “Mr. Morse” CPO Wiring
Audio output is fairly loud because
there’s no volume control so you may
want to use a headset with one built-in.
The PICAXE series of microcontrollers
produce a rather raspy sounding
square wave tone, which is probably
close to what rotary spark-gap Morse
code sounded like 120 years ago. Note:
My TRS jacks are wired as per the
PICAXE programming wiring pattern so
the tip and ground (sleeve) must be
reversed to work like a “regular” TRS
stereo jack. See Figure 5, next page, for
the PICAXE TRS wiring pattern.

Figure 4B: “Mr. Morse”
Beacon/Keying Wiring
I’ve added NPN transistor
Q2 from the ARCADE kit
to connect Mr. Morse to
an external solid state
transmitter for either
manual transmission
using a hand key or
automatic standalone
beacon (bE) mode.

Figure 5: PICAXE TRS Wiring Pattern
Credit: Components101.com

 “Mr. Morse” Features and Functions:

A. Code practise oscillator (CPO). Use the press switch or hand key (preferred).
B. Battery voltage monitor (useful with battery packs).
C. Set number of five-character code groups to send.
D. Set character sending speed.
E. Set user programmable beacon transmission repeat interval.

The following functions also print characters to the PICAXE Editor serial terminal if
connected via the PICAXE programming cable to the host computer.

F. Transmit user programmable beacon (optionally keys external transmitter).
G. Send random five-character alphanumeric groups plus common punctuation.
H. Send random five-character number groups only.
I. Send random five-character alphabet group only.

Note: The values for items C, D and E are automatically stored in electrically erasable
programmable read-only memory (EEPROM) and reloaded into random access memory
(RAM) on power up.

A built-in dual 7-segment light emitting diode (LED) displays the two letter
abbreviations of menu items plus parrots them back in Morse code via speaker (SP2) or
headphones, as well sending a Morse code “R” for “Roger” to confirm user selections
when pushbutton (S8) button C is pressed. Buttons A and B scroll up/down through
menu items and also increment/decrement any numbers. One caveat; the 7-segment
LED display serial data control red LED (D1) and NPN transistor (Q2) share the same
PICAXE pin/port so an external transmitter shouldn’t be connected until after activating
the beacon mode. I’ve included a 10-second delay for this purpose, which should be
enough time for you to connect the keying line (Q2) to your transmitter. Some
transceivers also have a menu “BK” key on/off function (Yaesu FT-857D) or other
method and this may be more convenient so the 10-second delay can be removed.

Speaking of cables, if you’re not a PICAXE user, you’ll need to purchase the custom
programming cable, a half dozen coloured (red, black and yellow) snap-connector wires
(RobotShop), and a couple of 3.5 mm stereo or tip, ring, sleeve (TRS) jacks (any
electronic parts supplier) to make two snap-jack TRS adapters. Rev. Ed. reversed the tip
and ground (sleeve) connections of their programming cable creating a teeny-tiny
problem with the de facto TRS standard (Figure 5 refers). You can either solder the TRS
jack adapters as per normal then remember to switch the tip and ground around when
connecting to the PICAXE LED MC to use the programming cable, or you can follow Rev.
Ed.’s TRS wiring pattern (my preference) then do vice versa to use as a regular
audio/hand key jack adapter. Figures 5A and 5B refer.

Computerized Morse Encoding/Decoding Process
Using 8-bit binary arithmetic, we can encode up to 256 Morse characters (0 to 255) or
most anything else for that matter. There’re several methods you can use but here’s
the simplest, fastest and therefore the best, IMHO.

Example: Ä (umlaut A) is · — · — (dot dash dot dash) in German Morse code.
What’re its encoded binary/integer values?

Solution: Let all dashes equal binary 1; let all dots equal binary 0; let a stop bit
equal binary 1 (marks the end of a character’s elements). Map all dots and
dashes including the stop bit to an 8-bit binary number using left to right bit
encoding (my preference). All unused bits are binary 0. Add all non-zero bit
values to determine the encoded binary/integer value.

Method 1: I’m a leftie plus we send character elements from left to right.
1 2 4 8 16 32 64 128
0 1 0 1 1 0 0 0 = 2 + 8 + 16 = 26
· — · — stop bit

Method 2: If you prefer right to left encoding. (Note the bit reversal!)
128 64 32 16 8 4 2 1

 0 0 0 1 1 0 1 0 = 16 + 8 + 2 = 26
 stop bit — · — ·

Therefore umlaut A is encoded 8-bit binary 00011010 and the equivalent encoded
integer value is 26. What we’ve done is “plant” a “seed” for a binary search tree (BST)
that we can “grow” by adding more and more encoded Morse code characters (nodes)
interconnected by “branches” that “sprout” left (for a dot) or right (for a dash). To
explain how “Mr. Morse” searches the BST for any encoded binary value that we need
to decode, I’ll use plain text pseudo-code. Figure 6, next page, refers.

Start BST Routine

 Is encoded binary value odd or even? (Modulo function used)
 If odd, take the right branch and send a dash (three time units)

If even, take the left branch and send a dot (one time unit)

 Divide encoded binary value by 2 (cuts the branches to search in half)

Is encoded binary value now equal to 1? (stop bit)
If Yes, exit BST routine (all done with this character)

 If No, pause for inter-element space (one time unit)
Repeat BST Routine

Figure 6: Morse Binary Tree
Accented letters, digraphs and punctuation were removed for easier visualization. Credit: “Aris00” at
English Wikipedia; transferred by “Ddxc” to the Wiki Commons.

As you can see, the Morse code BST has a very small number of nodes and branches,
but even a BST with a billion branches would only need 29 divisions by 2 (binary right
bit shifting) to get to a bottom node. This takes perhaps a fraction of a microsecond but
it gives the illusion of artificial “intelligence” (AI). But one typo, logic or syntax error
(“bug”) in any computer program usually results in GIGO, so having plain language
comments within your code will really help hunt for any bug(s).

Epilogue
Today, many revisionists feel that Alfred Vail was cheated of his rightful due because
there’s a contentious issue as to how much of the revised code and telegraph system
was Morse’s and how much was Vail’s. It’s a rather moot point considering Vail signed
a work-for-hire contract. When the U.S. government opted not to buy or even invest in
the project in 1838, Alfred lost all interest in the project and abandoned Morse, as was
his right by the terms of the contract. But Morse refused to let his dream die, and he
struggled on alone for years always fearing that someone, somewhere in the world
would “steal his thunder”. Vail only returned once the political wind had changed and
Morse had secured the needed federal funding to build a test telegraph line between
Washington and Baltimore in 1844. And the rest is history...

My Final
Feel free to make your own modifications or even translate the PICAXE code for use
with other microcontrollers like the Arduino Uno. And because I finished most of this
article on May 4th or “Star Wars” day, along with “May the fourth be with you!” I’ll also
add “May the Morse be with you!”—73

References and Resources

American Morse https://tinyurl.com/ycx6x58h

Binary Search Tree https://tinyurl.com/49f2mxnj

Elenco Designer https://tinyurl.com/bddsh8m5

iCW https://tinyurl.com/mrzwr3pn

ITU https://tinyurl.com/53kh9rz8

Morse code Assistive Technology
https://tinyurl.com/6ewzfkbk and https://tinyurl.com/52vr7dcs

Morse code for non-Latin alphabets https://tinyurl.com/5f3smww6

PICAXE (Revolution Education) https://rev-ed.co.uk

RobotShop https://ca.robotshop.com

Snap Circuits https://tinyurl.com/2p84je9r

“The American Electro-Magnetic Telegraph” https://tinyurl.com/2p8a3tb4

The 1865 International Telegraph Conference https://tinyurl.com/yc5tkjpn

